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Abstract 

Cloud computing has become a new platform for personal computing. Cloud computing provides high performance computing 
resources and mass storage resources. Cloud providers use the distributed cloud computing for the better cloud services.  This 
means that we can minimize the data scheduling between the data centers. The use of genetic algorithms to address the data 
placement problems in cloud computing. The experimental results show that genetic algorithm can effectively work out the 
approximate optimal data placement, and minimize the data scheduling between data centers. 
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I. INTRODUCTION 

Cloud computing, as well on-demand 
computing[1], is a kind of Internet-based 
computing that provides community dealing out 
property and information to computers and other 
devices on demand. It is a model for enable all over 
the place, on-demand right to use to a shared 
collection of configurable computing assets. Cloud 
computing and storage solutions make available 
users and enterprise with various capabilities to 
store and process their data in third-party data 
centers. It relies on sharing of resources to achieve 
consistency and economy of scale, similar to a 
utility (like the electrical energy grid over a 
network). Cloud providers naturally use a "pay as 
you go" model. The current accessibility of high-
capacity networks, not costly computers and 
storage space devices as well as the acknowledged 
acceptance of hardware virtualization, service-
oriented devise and autonomic and utility 
computing have led to a growth in cloud 
computing. 

Deciding how to assign data items to nodes in a 
distributed system in such way that they can be 
later retrieved [2]. It encompasses all data 
movement related activities such as transfer, 
staging, replication, space allocation and de-

allocation, registering and unregistering metadata, 
locating and retrieving data. Placing data on 
temporary local storage devices offers many 
advantages, but such “data placements also require 
careful management of storage resources and data 
movement, i.e. allocating storage space, staging-in 
of input data, staging-out of generated data, and de-
allocation of local storage after the data is safely 
stored at the destination. Data placement in 
distributed cloud computing can be divided into 
two types. One is static data placement most static 
data placement algorithms require complete 
knowledge of the workload statistics such as 
service times and access rates of all files. Second is 
dynamic data placement algorithms, generate file 
disk allocation schemes on-line to adopt to varying 
workload patterns without a prior knowledge of the 
files to be assigned in the future [3]-[7]. Dynamic 
data placement strategies update the placement 
strategy potentially upon every request. These 
dynamic strategies are very effective, when the 
data size is relatively small such as web proxy 
caching. Whereas large size applications like 
distributed video servers, dynamic schemes 
become less useful. Sometimes we want to access 
the data more than one data center. At the time we 
can get the data scheduling between data centers. 
Because of the huge size of data and limited 
bandwidth, data scheduling between data centers 
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has become huge problem. In data intensive 
computing if multiple computations are jointly 
process multiple datasets in frequent way, these 
data sets are supposed to be correlative with each 
other. The objective of data scheduling is partly to 
ensure that most important data are sent first, partly 
to ensure that any transmission is cost efficient. 
The data scheduling applies to data sent between 
the mobile host and the GSM. 

II. RELATED WORK: 

The promise of data-driven decision-making is now 
being recognized broadly, and there is growing 
enthusiasm for the notion of "Big Data," including 
the recent announcement from the White House 
about new funding initiatives across different 
agencies, that target research for Big Data. While 
the promise of Big Data is real -- for example, it is 
estimated that Google alone contributed 54 billion 
dollars to the US economy in 2009 -- there is no 
clear consensus on what is Big Data [8]. In fact, 
there have been many controversial statements 
about Big Data, such as "Size is the only thing that 
matters." In this panel we will try to explore the 
controversies and debunk the myths surrounding 
Big Data. 

 A Data Placement Strategy for Data-Intensive 
Applications in Cloud. With the development of 
information technology, data-intensive applications 
in cloud have been used in more and more fields. 
Because of the decentralized data centers in cloud, 
these applications now are facing some new 
challenges in data placement which mainly include 
how to reduce the time cost of data movements 
between data centers, how to deal with the data 
dependencies, and how to keep a relative load 
balancing of data centers. This paper proposes a 
data placement strategy [9], the three stages of 
which address the three challenges above 
respectively. Simulation shows that the strategy can 
effectively reduce the time cost of data movements 
across data centers during the application’s 
execution. 

A, a data manager must intelligently select 
data centers in which these data will 
reside. This is, however, not the case for 
data which must have a fixed location. 
Placement Strategy in Scientific Cloud 
Workflows, In scientific cloud workflows, 
large amounts of application data need to 
be stored in distributed data centers. To 
effectively store these when one task needs 
several datasets located in different data 
centers, the movement of large volumes of 
data becomes a challenge [10]. In this 

paper, we propose a matrix based k-means 
clustering strategy for data placement in scientific 
cloud workflows. The strategy contains two 
algorithms that group the existing datasets in k data 
centers during the workflow build-time stage, and 
dynamically clusters newly generated datasets to 
the most appropriate data centers–based on 
dependencies–during the runtime stage.  

A Framework for Reliable and Efficient Data 
Placement in Distributed Computing Systems. Data 
placement is an essential part of today's distributed 
applications since moving the data close to the 
application has many benefits. The increasing data 
requirements of both scientific and commercial 
applications and collaborative access to these data 
make it even more important [11]. In the current 
approach, data placement is regarded as a side 
affect of computation. Our goal is to make data 
placement a first class citizen in distributed 
computing systems just like the computational jobs. 
They will be queued, scheduled, monitored, 
managed, and even check pointed. Since data 
placement jobs have different characteristics than 
computational jobs, they cannot be treated in the 
exact same way as computational jobs. For this 
purpose, we are proposing a framework which can 
be considered as a “data placement subsystem” for 
distributed computing systems, similar to the I/O 
subsystem in operating systems. This framework 
includes a specialized scheduler for data placement, 
a high level planner aware of data placement jobs, 
a resource broker/policy enforcer and some 
optimization tools. Our system can perform reliable 
and efficient data placement, it can recover from all 
kinds of failures without any human intervention, 
and it can dynamically adapt to the environment at 
the execution time. 

III. SYSTEM DESIGN 

In cloud computing the data storage typically 
achieves large amounts of data such as petabytes 
magnitude scale, high requirements of data service 
types are high level great pressure to manage the 
data [12]. Cloud systems have the characteristics of 
data-intensive and compute intensive and the 
concurrent execution of large scale computations in 
the system 

A) Data scheduling between data centers in 
cloud computing: 

Assuming that a cloud computing system is 
composed by l data centers, and data are divided 
into n different datasets. When user request for data 
resources, we assign their different operations into 
m computations. If performing a computation 
needs to process datasets in different data centers, 
data scheduling between data center happen. The 
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physical model of data scheduling between data 
center is showed in Figure 1. 

Assuming that the collection of datasets stored in a 
distributed cloud computing system is: 

D= {d1, d2, d3,……..,dn} 

Where n is the number of datasets and the size of 
dataset di is Ԫi , i = 1, 2,….., n . 

The l data centers in the system are denoted as: 

S= {S1, S2, S3,……..,Sl} 

The basic capacity of data center Sk.The m 
computations in the system are denoted as: 

C= {c1, c2, c3,……….,cm} 

The execution frequencies of each computation is 

U= {µ1, µ2, µ3,……, µm} 

Where µ1 is the execution frequency of 
computation ci in unit interval. Now we can define 
a processing factor αij. The processing factor 
consists of dataset dj is needed to process during 
the execution of computation ci or not.             

αij  =      1 data set dj  is needed to process ci 

                    0 data set dj is not needed to process ci 
 
 
 
And we can form a Association matrix for the 
computation set C and dataset D is denoted as 
                        A= [αij]m*n 

Data placement is to distribute datasets into each 
data center. In this paper, data replica is out of 
consideration. Similarly, we define a placement 
factor βjk .The placement factor consists of dataset 
dj is placed in datacenter Sk or not. 

             1    When dataset dj is placed 

βjk  =                in data center Sk 

0 When dataset dj  is not placed  
              in data center Sk 

And we can form a Association matrix for the 
dataset D and datacenter S is denoted as 

                           B= [βjk] n*l 

Matrix B reflects the status of the datasets D stored 
in the data centers S. Why because the datasets and 
datacenters are placed in the placement matrix i.e; 
matrix B. We can easily find that the sum of the 
elements of each row in matrix B is 1 

Σl
k=1 βik=1 

The sum of the elements of the kth column in 
matrix B is the number of datasets stored in the 
data center Sk, when we place datasets into data 
center Sk, the stored data size should not exceed the 
basic capacity of Sk, thus 

Σn
j=1  βjk* Ԫj ≤ Sk 

Where Ԫj  is the size of the dataset and Sk is the 
basic capacity of datacenter. 

To place the processing matrix and placement 
matrix in another matrix i.e. matrix Z. 

Matrix Z=A*B 

This means that we can multiply the computations, 
datasets and datacenter. Then we can obtain the 
number of computations can accessing the number 
of datacenters. 

Then matrix Z as follows 

Z =A*B 

Z = [Σn
j=1(αij*βjk)] m*l 

Suppose 

Zik =Σ
n
j=1(αij*βjk) 

Then matrix 

Z= [zik] m*l 

Where zik is the number of datasets processed when 
the computation ci is performed one time in data 
center. This means that the computation ci is 
accessed from the datacenter Sk. The sum of 
elements in each row in matrix Z, denoted as Σl

k=1 

zik , is the total number of times of accessing all 
data centers during the execution of the 
computation ci , also is the number of datasets 
processed during the execution of the computation 
ci . 

 

Fig 1: A physical model of data scheduling between data 
centers 
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The sum of elements in each column, denoted as 
Σm

i=1 zik is the number of the datasets processed in 
data center Sk when all the computations are 
performed one time. 

Define a u (zik) function denoted as, 

u(zik )  =    1     zik≠0 

                  0     zik=0 

Then the number of data centers accessed during 
the execution of computation ci is 

Σl
k=1 u (zik) 

The number of data scheduling is         (Σl
k=1 u (zik)-

1) when computation ci is executed one time. 
Which means that computation ci is accessed one 
time from the datacenter Sk. 

When the placement matrix is B, the total number 
of data scheduling during the execution of all 
computations in the system in unit interval can be 
expressed as: 

Γ (B) = [Σm
i=1Σ

l
k=1u (zik)-1]*µi 

Our objective is to find the optimal data placement 
solution B* that minimize Γ (B) . When placing 
datasets to data centers, we should meet the 
requirements of data center capacity and no 
duplication of data placement. 

B*= argmin{ Γ(B)} 

This Γ (B) requires more data scheduling. So we 
can reduce the data scheduling between data 
centers by using Genetic Algorithm. 

IV. GENETIC ALGORITHM IN DATA PLACEMENT 

STRATEGY 

Genetic algorithm is a search method that mimics 
the process of natural selection. Genetic algorithm 
used to generate useful solutions to optimization 
and search problems. A solution generated by a 
genetic algorithm is called a chromosome. The 
collection of chromosomes is referred as 
population. These chromosomes will undergo a 
process called fitness function. Actually there are 
lots of traditional optimization algorithms such as 
Exhaustive search algorithm, Monte Carlo 
algorithm, Genetic algorithm and so on. 

Exhaustive search algorithm is a randomization 
technique [13]. It can be used to reduce the search 
space. Exhaustive search algorithms are 
backtracking algorithms, but all backtracking 
algorithms are not exhaustive. These algorithms 
will take high computational complexity which is 

approximately (ln). The exhaustive search 
algorithm is possible when datasets are small. 

Monte Carlo algorithm is a randomized method 
[14]. It uses randomness and statistics to get the 
result. The computation complexity has improved 
while compare to the Exhaustive search algorithm 
but the search complexity is not still high. So we 
can use the Genetic algorithm. 

Genetic algorithm is direct method to evaluate an 
optimization solutions based on the natural 
selection and natural genetics [15]-[16]. A 
population consists of collection of chromosomes 
or individuals. For these individuals we can 
evaluate the fitness value, if the highest fitness 
value is selected from the current population, then 
crossover and mutation operations are performed. 
The best candidate solutions (individuals) are used 
in the algorithm for the next generation. For the 
best solutions we have to follow some steps. 

A. Encodng: 

Encoding is the way to represent the solution. In 
genetic algorithm the placements of datasets in 
datacenters is represented by matrix B. In this 
algorithm the matrix B is directly manipulated as a 
genotype. 

B. Chromosome and Population 

Chromosome is a set of parameters which define a 
proposed solution to the problem that the genetic 
algorithm is trying to solution. The set of all 
solutions is known as the population. 

A population consists of several individuals and it 
is a subset of whole searching space. 

C. Fitness Function 

Fitness function is used as to summarize the 
solution as a single point [17]-[18]. The fitness 
function is a reciprocal of the objective function. In 
genetic algorithm the objective function is denoted 
as Γ (B). And fitness function (F) is F=1/ Γ (B). 

A. Genetic operators 

Genetic operators are used to guide the algorithm 
towards a solution in a given problem. In genetic 
algorithm we have to use 3 different types of 
operators. 

1. Selection: 

In selection process many types of selection 
processes. They are Roulette wheel selection, Rank 
selection, Steady state selection, Tournament 
selection. In this paper we are using Roulette wheel 
selection. Why because all the chromosomes are 

14 

15 

16 
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placed in the population, if the high fitness values 
are selected more times. If the fitness value is low 
that chromosome will be rejected. 

If the selection process may follow as below.  

1. The fitness function is evaluated for each 
individual, providing fitness values, which are then 
normalized. Normalization means dividing the 
fitness value of each individual by the sum of all 
fitness values, so that the sum of all resulting 
fitness values equals 1. 

2. The population is sorted by descending fitness 
values. 

3. Accumulated normalized fitness values are 
computed (the accumulated fitness value of an 
individual is the sum of its own fitness value plus 
the fitness values of all the previous individuals). 
The accumulated fitness of the last individual 
should be 1 (otherwise something went wrong in 
the normalization step). 

4. A random number R between 0 and 1 is chosen. 

5. The selected individual is the first one whose 
accumulated normalized value is greater than R. 

2. Crossover 

Crossover is a genetic operator which can be used 
to vary the chromosome or chromosomes from one 
generation to the next. 

Chromosome A 

 

Chromosome B 

 

Offspring 1 

Offspring 2 

   

Fig 2: A two point crossover Example 

3. Mutation 

Mutation is a genetic operator, which is used to 
maintain genetic diversity from one generation of 
the chromosomes to the next. In mutation operator 
the selected bits are inverted, which means that 0 as 
1 and vice versa. 

 

 

Fig: Before Mutation 

 

Fig: After Mutation 

Fig 3: Mutation Example 

V. DATA PLACEMENT STRATEGY IN GENETIC 

ALGORITHM EXAMPLE 

We have to place the data placement strategy in 
genetic algorithm following some steps. 

Step 1: Determine the size of the population (L), 
crossover rate (Cr) and mutation rate (Mr). 

Step 2: Generate initial population in random BL 
(0) consists of L placement matrices. All the 
elements of B matrix is set to zero, then generate n 
different random numbers i.e; {r1, r2,…,ri,….,rn} 
(0≤ri≤1). 

If ri indicates that the dataset di is to be placed into 
the datacenter Sri then placement matrix is changed 
to 1. If the generated matrix does not meet 
requirements,(do not cross the limited capacity of 
datacenter), then it abandon and generate a new 
matrix. 

Step 3:  Calculate the each individual in the 
population BL (T), T=0, 1, 2, 3,…, and generate a 
matrix Z by matrix multiplication, Z=A*B. the 
number of data scheduling is calculated from the 
equation(15). 

Step 4: Calculate the number of data scheduling is 
Γ (Bt). For each individual in each population BL 
(T). The fitness value of  Bt  is denoted as F=1/ Γ 
(Bt ). 

After calculating the fitness value of each 
individual in population, then calculate the 
probabilities of L individual from BL (T) by using 
the roulette wheel selection. 

Step 5: perform crossover operation on selected 
placement matrices. The crossover rate (Cr) 
indicates that percentage of chromosomes taking 
part in the crossover operation. 

Step 6: perform mutation operation on crossover 
resultants. 

We have to take practical example on process of 
data placement based on genetic algorithm. 

A Data Placement Strategy Based on Genetic 
Algorithm in Cloud Computing, we can minimize 
the data scheduling between data centers. Let us 

1  0  1  1   1  1  0  1

1  1  1  0  0  1  0  0

1  0  1  1   0  1  0  0

1  1  1  0  1  1  0  1

1  1 0  1  0 1  0  1 

1  1  1  1  1  0  0 1 
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examine the practical example on data placement 
strategy based on Genetic Algorithm. 

Let us assume data centers as (l), datasets as (n) 
and computations as(c). In this example we can 
define Processing factor (αij) and Placement factor 
(βjk). 

The Association matrix (processing factor) for 
computation set C and Datasets D is denoted as A. 

A= [αij]m*n 

A= 

The Association matrix (placement factor) for 
dataset D and datacenter S is denoted as B. 

B= [βjk]n*l 

  B1= 

Where we can define a matrix Z=A*B1 

Z=[Σn
j=1(αij*βjk)]m*l 

Zik=       * 

Zik= 

In the resultant matrix Z, row can be represented as 
data centers. And columns represented as 
computations. Where Σi=1

m u (Zik). is the number of 
the datasets processed in data center Sk when all 
the computations are performed one time. 

Σi=1
m u (Zik) = 5+5+6 

       = 11 
Where Σl

k=1 u (Zik) is the total number of times of 
accessing all data centers during the execution of 
the computation ci , also is the number of datasets 
processed during the execution of the computation 
ci. 
Σl

k=1 u (Zik) = 4+5+5+2 
         = 16 

In this example all computations are executed one 
time is 16. And we can define a execution 
frequencies of each computation ci is denoted as µi. 
The number of data scheduling is  (Σl

k=1 u(zik)-1) 
when computation ci is executed one time. 
The number of data scheduling is 
(16-1) =15 when computation c1 is executed one 
time. 
(16-2) = 14 when computation c1 is executed 
second time. 
All computations are executed in the unit interval is 
Γ (B= Σm

i=1 [Σ
l
k=1 u (zik)-1]*µi 

        =Σm
i=1 [15*1] 

Where µ1=1 
Γ (B1) = [15+28+26+36+11+20+9+8+14+24+5] 

       =196 
All computations are executed in the unit interval is 
196. 
In this example the processing factor is constant, 
and placement factor is varies. This means that 

  A= 

B2= 

Z=     * 

Zik= 

0   1   0    1 

0   1   0    1 

1   0   1    0 

0   1   0    1 

0   1   0    1 

1   0   1    0 

1   1   0   1 

0   1   1    0 

1   0   1    1 

1   1   1    0 

1   1   0   1 

0   1   1    0 

1   0   1    1 

1   1   1    0 

0   1   0    1 

0   1   0    1 

1   0   1    0 

1   2   2    0 

1   2   2    0 

2   1   1    2 

1    1     0  1 

1    1     1  0 

0    0     1  0 

1    0     1  0 

2    1     2  0 

2    1     2  0 

1    1     1  1 

0   1   0    1 

0   1   0    1 

1 0 1 0

1    1     0  1 

1    1     1  0 

0    0     1  0 

1    0     1  0 
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Σi=1
m u (Zik) = 5+5 +4 

                     =14 
 Σl

k=1 u (Zik) = 5+3+5+1 
                     =14 
The number of data scheduling is (14-1) = 13 is 
executed one time. 
The number of data scheduling is (14-2) =12 is 
executed second time. 
All computations are executed in the unit interval is 
Γ (B2) = Σm

i=1 [Σ
l
k=1u (zik)-1]*µi 

           = Σm
i=1 [13*1] 

           =151 
And 
 
A= 
 
 
 
 
 
 
 
B3= 
 
 
 
 
Z=A*B3 

 
 

 Z=                                * 

 

 

 

 

Zik= 

 

 

Now calculate the sum of rows and columns in 
matrix Z. 
Σi=1

m u (Zik) = 4+4+4 
                    =12 
Σl

k=1 u (Zik) = 4+3+2+3 
                   =12 
The number of data scheduling is (12-1) = 11 is 
executed one time. 
The number of data scheduling is (12-2) =10 is 
executed second time. 
All computations are executed in the unit interval is 
Γ (B3) = Σm

i=1 [Σ
l
k=1 u (zik)-1]*µi 

           = Σm
i=1 [11*1] 

           =95 

And 
 
A= 
 
 
 
 
 
 
 
B4= 
 
 
 
 
 
Z=A*B4 

 
 
Z=                                 * 
 
 
 
 

 

 

Zik= 

 

Now we can calculate the sum of rows and 
columns. 
Σi=1

m u (Zik) = 5+5+4 
                    =14 
Σl

k=1 u (Zik) = 3+4+6+1 
                   =14 
The number of data scheduling is (14-1) = 13 is 
executed one time. 
The number of data scheduling is (14-2) =12 is 
executed second time. 
All computations are executed in the unit interval is 
Γ (B4) = Σm

i=1 [Σ
l
k=1u (zik)-1]*µi 

           = Σm
i=1 [13*1] 

           =142 
In the above example the data scheduling between 
data centers is more. To reduce the data scheduling 
between data centers by using Genetic Algorithm. 
In the genetic algorithm we are using fitness 
function, crossover and mutation. 

A) Fitness function 
Fitness function is the evaluation function to guide 
the search in genetic algorithm. In the issue of 
genetic algorithm-based data placement, the 
objective function is denoted as Г(B), and the 
fitness function is the reciprocal of the objective 
function, that is 1 = ܨ/Г(B). 
Fitness function 
f (1) =1/߁(B1) 

0   1   0    1 

0   1   0    1  

1   0   1    0 

1    0    1    0 

0    1    1    0 

0    0    1    1 

1    1    1    0
0   1   0    1 

0   1   0    1  

1   0   1    0 

1    1     0      0 

1     1     0     1 

1     0     0     1 

0     0     1     0 

0   1   0    1 

0   1   0    1  

1 0 1 0

1    1     0      0 

1     1     0     1 

1     0     0     1 

0     0     1     0 

1      1        1      1 

1      1        1      1 

2      1        0      1 

1      2     2       0 

1      2     2       0 

1      0     2       1 

0   1   0    1 

0   1   0    1  

1   0   1    0 

1    0    1    0 

0    1    1    0 

0    0    1    1 

1    1    1    0 
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        =1/196 
        =0.0051 
f (2) =1/	Γ(B2) 
        =1/151 
        =0.0066 
f (3) =1/	߁(B3) 
        =1/95 
        =0.0105 
f (4) =1/	߁(B4) 
        =1/142 
        =0.007 
Total=0.0051+0.0066+0.0105+0.0070 
        =0.0292 

B) Probability 
Suppose there is an individual ݇ and its probability 
of being selected is p (k): 
P (k) =f (k)/∑i=1

N-1 f (i);  k=1, 2, 3,., N 
P [1] =f (1)/ total 
         =0.0051/0.0292 
         =0.1746 
P [2] =f (2)/ total 
         =0.0066/0.0292 
         =0.2260 
P [3] =f (3)/ total 
         =0.0105/0.0292 
         =0.3595 
P [4] =f (4)/ total 
         =0.0070/0.0292 
         =0.2397 
Suppose 0 = (0)ݍ, 
q (k ) = p (1) + p (2) +………+ p (k ); 
 k = 1, 2,…….N ; 
q (1) =0.1746 
q (2) =0.1746+0.2260 
=0.4006 
q (3) =0.1746+0.2260+0.3595 
=0.7601 
q (4) =0.1746+0.2260+0.3595+0.2397 
=0.9998 
After that we can perform crossover and mutation 
operation. 

C) Crossover 
0  1  1  0         1  1  1  0 

1  1  0  1         1  1  0  1                                                           

1  0  1  1         0  0  1  0 

1  1  1  0         1  0  1  0 

B1                 B2 

Before two point crossover 

1  1  0  1         1  1  0  1 

1  1  1  0         0  1  1  0 

0  0  1  0         1  0  1  1 

1  1  1  0           1  0  1  0 

B1                        B2 

After two point crossover 

Fig 4: Crossover operation on placement 
matrices. 

D) Mutation 

1   1   0   1           1   0   0   1 

0   1   1   0           1   0   1   0 

1   0   1   1           1   0   1   1 

1   1   1   0           1   1   1   0 

B1                         B1 
Before Mutation          After Mutation 

Fig 5: Mutation operation on placement 
matrices. 

Here we can derive normal crossover and mutation. 
And now we can use crossover and mutation 
algorithms. 

We have take a values L=4, Cr=25% (0.25) and Mr 
=10% (0.1) 

E) Crossover algorithm: 

i=0, num=0, j=0; 

if   i<L (0<4)       /*TRUE*/ 

/*Then generate random number r0=0.201*/ 

if ri < Cr     (0.201<0.25)               /*TRUE*/ 

/* Select B0 as a father */ 

num =num+1   (num =0+1) 

num =1 

i=i+1      (i=0+1) 

i=1 

if j<num/2    /* generate a random number    rk =1 
(rk≠j) 

/* change genes between Brk, Bj */ 

/* crossover between B1, B0 */ 

j=j+1 (j=0+1) 

j=1 

This algorithm continuous up to condition is false.  
If the condition is false the crossover algorithm is 
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terminated. And the crossover operation performed 
between the selected parents from the above 
crossover algorithm. 

By using the crossover algorithm we can perform 
the crossover operation between B0 and B1, B1 and 
B2. 

F) Mutation Algorithm

i=0 

if i<L   (0<4)    /*TRUE*/ 

/*generate a random number r0=0.201*/ 

if ri< Mr    (0.201<0.1)    /*FALSE*/ 

if i<L   (1<4)            /*TRUE*/ 

/* generate a random number r0=0.09*/ 

if ri< Mr    (0.09<0.1)  /*TRUE*/ 

Mutate B1 

i=i+1   (i=1+1) 

i=2 

This algorithm continuous up to condition is false. 
If the condition is false the mutation algorithm is 
terminated. And the mutation operation performed 
between the selected parents from the above 
mutation algorithm. 

The mutation operation performed on B0, B1, B2 
matrices. The data can be accessed from the datasets 
B0, B1, B2. The resultant data can be modified after 
performing the crossover and mutation operations. 

VI. EXPERIMENTS AND RESULTS

To test the data placement strategy based on genetic 
algorithm proposed data storage and access platform 
is constructed. The platform is composed of 20 Dell 
Power Edge T410 servers. Each of them has 8 Intel 
Xeon E5606 CPU (2.13 GHz), 16G DDR3 memory 
and 3TB SATA disk. Every server acts as a data 
center and we deploy VMware and independent 
hadoop file system on each data center under the 
environment of Gigabit Ethernet.  

A) Result and Analysis

The data placement strategy in genetic algorithm is 
as follows. The feasibility of genetic algorithm in 
data placement is tested. The solutions of genetic 
algorithm are compared with the Exhaustive search 
algorithm, when the numbers of datasets are small. 
The relationship between the minimum number of 
data scheduling of different number of datasets and 
the generation are represented by a line chart. 

In genetic algorithm the size of initial population 
was 4, the maximum generations was set to 100, 
and the crossover rate and mutation rate were 0.25 
and 0.1. The number of iterations of Monte Carlo 
algorithm is 102. 

The data scheduling between data centers of three 
algorithms are shown in below figure. 

Fig 6: Data scheduling between data centers with different 
number of datasets. 

We can increase the number of generations then the 
number of data scheduling becomes smaller and 
smaller. The optimization results are very near to 
solutions. 

If the number of datasets is large, the computation 
complexity is high in the Exhaustive search 
algorithm. The optimization results are infeasible, 
because of the computation complexity. Then we 
compare the results of genetic algorithm and Monte 
Carlo algorithm. We ran 20 different test 
computations randomly for 500 times on 8 data 
centers with different datasets. And we increase the 
number of data centers in different searching 
algorithms i.e; 20, 40, 60, and so on. The results are 
shown in below.   

Fig 7: Data scheduling between data centers with different 
number of datasets. 
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In the above graph we can compare the results of 
data scheduling between the data centers with the 
number of datasets. And now we can compare the 
results of data scheduling between the data centers 
with the number of data centers. By comparing 
those results such as numbers of data sets and 
numbers of data centers. 

 

Fig 8: A data scheduling between data centers with different 
number of datasets. 

From the above two figures the results are 
compared. The data scheduling between data 
centers of approximate results of genetic algorithm 
is smaller than results of Monte Carlo algorithm. 
When the number of datasets is large, the optimal 
solutions can be improved compared with the 
monte carlo algorithm.  

VII. CONCLUSION 

In the environment of distributed cloud computing, 
the data placement becomes a huge or critical issue. 
In genetic algorithm the optimization time is low. 
With the results of optimization time is low in 
genetic algorithm with the monte carlo algorithm. 

Fig 9: Optimization time of the two algorithms in different 
number of data sets. 

Reasonable placement of dataset in data centers can 
minimize the data scheduling between the data 
centers. 

 

Fig 10: Optimization time of the two algorithms in different 
number of data centers. 

In this paper a mathematical is built. The model 
illustrates relationship between datasets, data 
centers and computations. In this paper three 
different types of algorithms are used. The 
Exhaustive search algorithm is valid when the 
number of datasets is small. In Monte Carlo 
algorithm the optimization time is high. And 
genetic algorithm is overcome those problems in 
above two algorithms. 

Genetic algorithm can find the optimal data 
placement matrix, when the numbers of data sets 
are large. Genetic algorithm can find an 
approximate optimal data placement matrix in a 
reasonable time, and the optimization result is 
better than the exhaustive search algorithm, Monte 
Carlo algorithm.  

The focus of our research is to find the data 
placement matrix, and reduce the data scheduling 
between data centers as small as possible. In 
genetic algorithm the selection operator is main 
important. The selection operators such as Roulette 
wheel selection, Steady state selection, Tournament 
selection, and so on. In this paper we are using 
Roulette wheel selection, why because the selection 
operator in genetic algorithm affects the 
performance of the algorithm. 
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