
A Data Placing Policy Established on Genetic
Algorithm in Cloud Computing

Y.Neeraja1, G.Divya Zion2, U.Supriya3
1M.Tech(CS) Student, Ravindra College of Engineering For Women, Kurnool, A.P, India.

2Assistant Professor, Dept of CSE, Ravindra Engineering College for Women, Kurnool, AP,
India.

3Assistant Professor, Dept of CSE, G.Pullaiah College of Engineering & Technology,

Kurnool, AP, India

Abstract

Cloud computing has become a new platform for personal computing. Cloud computing provides high performance computing
resources and mass storage resources. Cloud providers use the distributed cloud computing for the better cloud services. This
means that we can minimize the data scheduling between the data centers. The use of genetic algorithms to address the data
placement problems in cloud computing. The experimental results show that genetic algorithm can effectively work out the
approximate optimal data placement, and minimize the data scheduling between data centers.

Keywords

Cloud computing, Data placement, Genetic algorithm

I. INTRODUCTION

Cloud computing, as well on-demand
computing[1], is a kind of Internet-based
computing that provides community dealing out
property and information to computers and other
devices on demand. It is a model for enable all over
the place, on-demand right to use to a shared
collection of configurable computing assets. Cloud
computing and storage solutions make available
users and enterprise with various capabilities to
store and process their data in third-party data
centers. It relies on sharing of resources to achieve
consistency and economy of scale, similar to a
utility (like the electrical energy grid over a
network). Cloud providers naturally use a "pay as
you go" model. The current accessibility of high-
capacity networks, not costly computers and
storage space devices as well as the acknowledged
acceptance of hardware virtualization, service-
oriented devise and autonomic and utility
computing have led to a growth in cloud
computing.

Deciding how to assign data items to nodes in a
distributed system in such way that they can be
later retrieved [2]. It encompasses all data
movement related activities such as transfer,
staging, replication, space allocation and de-

allocation, registering and unregistering metadata,
locating and retrieving data. Placing data on
temporary local storage devices offers many
advantages, but such “data placements also require
careful management of storage resources and data
movement, i.e. allocating storage space, staging-in
of input data, staging-out of generated data, and de-
allocation of local storage after the data is safely
stored at the destination. Data placement in
distributed cloud computing can be divided into
two types. One is static data placement most static
data placement algorithms require complete
knowledge of the workload statistics such as
service times and access rates of all files. Second is
dynamic data placement algorithms, generate file
disk allocation schemes on-line to adopt to varying
workload patterns without a prior knowledge of the
files to be assigned in the future [3]-[7]. Dynamic
data placement strategies update the placement
strategy potentially upon every request. These
dynamic strategies are very effective, when the
data size is relatively small such as web proxy
caching. Whereas large size applications like
distributed video servers, dynamic schemes
become less useful. Sometimes we want to access
the data more than one data center. At the time we
can get the data scheduling between data centers.
Because of the huge size of data and limited
bandwidth, data scheduling between data centers

Y.Neeraja et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 7 (4) , 2016, 1836-1846

www.ijcsit.com 1836

has become huge problem. In data intensive
computing if multiple computations are jointly
process multiple datasets in frequent way, these
data sets are supposed to be correlative with each
other. The objective of data scheduling is partly to
ensure that most important data are sent first, partly
to ensure that any transmission is cost efficient.
The data scheduling applies to data sent between
the mobile host and the GSM.

II. RELATED WORK:

The promise of data-driven decision-making is now
being recognized broadly, and there is growing
enthusiasm for the notion of "Big Data," including
the recent announcement from the White House
about new funding initiatives across different
agencies, that target research for Big Data. While
the promise of Big Data is real -- for example, it is
estimated that Google alone contributed 54 billion
dollars to the US economy in 2009 -- there is no
clear consensus on what is Big Data [8]. In fact,
there have been many controversial statements
about Big Data, such as "Size is the only thing that
matters." In this panel we will try to explore the
controversies and debunk the myths surrounding
Big Data.

 A Data Placement Strategy for Data-Intensive
Applications in Cloud. With the development of
information technology, data-intensive applications
in cloud have been used in more and more fields.
Because of the decentralized data centers in cloud,
these applications now are facing some new
challenges in data placement which mainly include
how to reduce the time cost of data movements
between data centers, how to deal with the data
dependencies, and how to keep a relative load
balancing of data centers. This paper proposes a
data placement strategy [9], the three stages of
which address the three challenges above
respectively. Simulation shows that the strategy can
effectively reduce the time cost of data movements
across data centers during the application’s
execution.

A, a data manager must intelligently select
data centers in which these data will
reside. This is, however, not the case for
data which must have a fixed location.
Placement Strategy in Scientific Cloud
Workflows, In scientific cloud workflows,
large amounts of application data need to
be stored in distributed data centers. To
effectively store these when one task needs
several datasets located in different data
centers, the movement of large volumes of
data becomes a challenge [10]. In this

paper, we propose a matrix based k-means
clustering strategy for data placement in scientific
cloud workflows. The strategy contains two
algorithms that group the existing datasets in k data
centers during the workflow build-time stage, and
dynamically clusters newly generated datasets to
the most appropriate data centers–based on
dependencies–during the runtime stage.

A Framework for Reliable and Efficient Data
Placement in Distributed Computing Systems. Data
placement is an essential part of today's distributed
applications since moving the data close to the
application has many benefits. The increasing data
requirements of both scientific and commercial
applications and collaborative access to these data
make it even more important [11]. In the current
approach, data placement is regarded as a side
affect of computation. Our goal is to make data
placement a first class citizen in distributed
computing systems just like the computational jobs.
They will be queued, scheduled, monitored,
managed, and even check pointed. Since data
placement jobs have different characteristics than
computational jobs, they cannot be treated in the
exact same way as computational jobs. For this
purpose, we are proposing a framework which can
be considered as a “data placement subsystem” for
distributed computing systems, similar to the I/O
subsystem in operating systems. This framework
includes a specialized scheduler for data placement,
a high level planner aware of data placement jobs,
a resource broker/policy enforcer and some
optimization tools. Our system can perform reliable
and efficient data placement, it can recover from all
kinds of failures without any human intervention,
and it can dynamically adapt to the environment at
the execution time.

III. SYSTEM DESIGN

In cloud computing the data storage typically
achieves large amounts of data such as petabytes
magnitude scale, high requirements of data service
types are high level great pressure to manage the
data [12]. Cloud systems have the characteristics of
data-intensive and compute intensive and the
concurrent execution of large scale computations in
the system

A) Data scheduling between data centers in
cloud computing:

Assuming that a cloud computing system is
composed by l data centers, and data are divided
into n different datasets. When user request for data
resources, we assign their different operations into
m computations. If performing a computation
needs to process datasets in different data centers,
data scheduling between data center happen. The

Y.Neeraja et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 7 (4) , 2016, 1836-1846

www.ijcsit.com 1837

physical model of data scheduling between data
center is showed in Figure 1.

Assuming that the collection of datasets stored in a
distributed cloud computing system is:

D= {d1, d2, d3,……..,dn}

Where n is the number of datasets and the size of
dataset di is Ԫi , i = 1, 2,….., n .

The l data centers in the system are denoted as:

S= {S1, S2, S3,……..,Sl}

The basic capacity of data center Sk.The m
computations in the system are denoted as:

C= {c1, c2, c3,……….,cm}

The execution frequencies of each computation is

U= {µ1, µ2, µ3,……, µm}

Where µ1 is the execution frequency of
computation ci in unit interval. Now we can define
a processing factor αij. The processing factor
consists of dataset dj is needed to process during
the execution of computation ci or not.

αij = 1 data set dj is needed to process ci

 0 data set dj is not needed to process ci

And we can form a Association matrix for the
computation set C and dataset D is denoted as
 A= [αij]m*n

Data placement is to distribute datasets into each
data center. In this paper, data replica is out of
consideration. Similarly, we define a placement
factor βjk .The placement factor consists of dataset
dj is placed in datacenter Sk or not.

 1 When dataset dj is placed

βjk = in data center Sk

0 When dataset dj is not placed
 in data center Sk

And we can form a Association matrix for the
dataset D and datacenter S is denoted as

 B= [βjk] n*l

Matrix B reflects the status of the datasets D stored
in the data centers S. Why because the datasets and
datacenters are placed in the placement matrix i.e;
matrix B. We can easily find that the sum of the
elements of each row in matrix B is 1

Σl
k=1 βik=1

The sum of the elements of the kth column in
matrix B is the number of datasets stored in the
data center Sk, when we place datasets into data
center Sk, the stored data size should not exceed the
basic capacity of Sk, thus

Σn
j=1 βjk* Ԫj ≤ Sk

Where Ԫj is the size of the dataset and Sk is the
basic capacity of datacenter.

To place the processing matrix and placement
matrix in another matrix i.e. matrix Z.

Matrix Z=A*B

This means that we can multiply the computations,
datasets and datacenter. Then we can obtain the
number of computations can accessing the number
of datacenters.

Then matrix Z as follows

Z =A*B

Z = [Σn
j=1(αij*βjk)] m*l

Suppose

Zik =Σ
n
j=1(αij*βjk)

Then matrix

Z= [zik] m*l

Where zik is the number of datasets processed when
the computation ci is performed one time in data
center. This means that the computation ci is
accessed from the datacenter Sk. The sum of
elements in each row in matrix Z, denoted as Σl

k=1

zik , is the total number of times of accessing all
data centers during the execution of the
computation ci , also is the number of datasets
processed during the execution of the computation
ci .

Fig 1: A physical model of data scheduling between data
centers

1

2

3

4

5

6

7

8

9

10

11

12

13

Y.Neeraja et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 7 (4) , 2016, 1836-1846

www.ijcsit.com 1838

The sum of elements in each column, denoted as
Σm

i=1 zik is the number of the datasets processed in
data center Sk when all the computations are
performed one time.

Define a u (zik) function denoted as,

u(zik) = 1 zik≠0

 0 zik=0

Then the number of data centers accessed during
the execution of computation ci is

Σl
k=1 u (zik)

The number of data scheduling is (Σl
k=1 u (zik)-

1) when computation ci is executed one time.
Which means that computation ci is accessed one
time from the datacenter Sk.

When the placement matrix is B, the total number
of data scheduling during the execution of all
computations in the system in unit interval can be
expressed as:

Γ (B) = [Σm
i=1Σ

l
k=1u (zik)-1]*µi

Our objective is to find the optimal data placement
solution B* that minimize Γ (B) . When placing
datasets to data centers, we should meet the
requirements of data center capacity and no
duplication of data placement.

B*= argmin{ Γ(B)}

This Γ (B) requires more data scheduling. So we
can reduce the data scheduling between data
centers by using Genetic Algorithm.

IV. GENETIC ALGORITHM IN DATA PLACEMENT

STRATEGY

Genetic algorithm is a search method that mimics
the process of natural selection. Genetic algorithm
used to generate useful solutions to optimization
and search problems. A solution generated by a
genetic algorithm is called a chromosome. The
collection of chromosomes is referred as
population. These chromosomes will undergo a
process called fitness function. Actually there are
lots of traditional optimization algorithms such as
Exhaustive search algorithm, Monte Carlo
algorithm, Genetic algorithm and so on.

Exhaustive search algorithm is a randomization
technique [13]. It can be used to reduce the search
space. Exhaustive search algorithms are
backtracking algorithms, but all backtracking
algorithms are not exhaustive. These algorithms
will take high computational complexity which is

approximately (ln). The exhaustive search
algorithm is possible when datasets are small.

Monte Carlo algorithm is a randomized method
[14]. It uses randomness and statistics to get the
result. The computation complexity has improved
while compare to the Exhaustive search algorithm
but the search complexity is not still high. So we
can use the Genetic algorithm.

Genetic algorithm is direct method to evaluate an
optimization solutions based on the natural
selection and natural genetics [15]-[16]. A
population consists of collection of chromosomes
or individuals. For these individuals we can
evaluate the fitness value, if the highest fitness
value is selected from the current population, then
crossover and mutation operations are performed.
The best candidate solutions (individuals) are used
in the algorithm for the next generation. For the
best solutions we have to follow some steps.

A. Encodng:

Encoding is the way to represent the solution. In
genetic algorithm the placements of datasets in
datacenters is represented by matrix B. In this
algorithm the matrix B is directly manipulated as a
genotype.

B. Chromosome and Population

Chromosome is a set of parameters which define a
proposed solution to the problem that the genetic
algorithm is trying to solution. The set of all
solutions is known as the population.

A population consists of several individuals and it
is a subset of whole searching space.

C. Fitness Function

Fitness function is used as to summarize the
solution as a single point [17]-[18]. The fitness
function is a reciprocal of the objective function. In
genetic algorithm the objective function is denoted
as Γ (B). And fitness function (F) is F=1/ Γ (B).

A. Genetic operators

Genetic operators are used to guide the algorithm
towards a solution in a given problem. In genetic
algorithm we have to use 3 different types of
operators.

1. Selection:

In selection process many types of selection
processes. They are Roulette wheel selection, Rank
selection, Steady state selection, Tournament
selection. In this paper we are using Roulette wheel
selection. Why because all the chromosomes are

14

15

16

Y.Neeraja et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 7 (4) , 2016, 1836-1846

www.ijcsit.com 1839

placed in the population, if the high fitness values
are selected more times. If the fitness value is low
that chromosome will be rejected.

If the selection process may follow as below.

1. The fitness function is evaluated for each
individual, providing fitness values, which are then
normalized. Normalization means dividing the
fitness value of each individual by the sum of all
fitness values, so that the sum of all resulting
fitness values equals 1.

2. The population is sorted by descending fitness
values.

3. Accumulated normalized fitness values are
computed (the accumulated fitness value of an
individual is the sum of its own fitness value plus
the fitness values of all the previous individuals).
The accumulated fitness of the last individual
should be 1 (otherwise something went wrong in
the normalization step).

4. A random number R between 0 and 1 is chosen.

5. The selected individual is the first one whose
accumulated normalized value is greater than R.

2. Crossover

Crossover is a genetic operator which can be used
to vary the chromosome or chromosomes from one
generation to the next.

Chromosome A

Chromosome B

Offspring 1

Offspring 2

Fig 2: A two point crossover Example

3. Mutation

Mutation is a genetic operator, which is used to
maintain genetic diversity from one generation of
the chromosomes to the next. In mutation operator
the selected bits are inverted, which means that 0 as
1 and vice versa.

Fig: Before Mutation

Fig: After Mutation

Fig 3: Mutation Example

V. DATA PLACEMENT STRATEGY IN GENETIC

ALGORITHM EXAMPLE

We have to place the data placement strategy in
genetic algorithm following some steps.

Step 1: Determine the size of the population (L),
crossover rate (Cr) and mutation rate (Mr).

Step 2: Generate initial population in random BL
(0) consists of L placement matrices. All the
elements of B matrix is set to zero, then generate n
different random numbers i.e; {r1, r2,…,ri,….,rn}
(0≤ri≤1).

If ri indicates that the dataset di is to be placed into
the datacenter Sri then placement matrix is changed
to 1. If the generated matrix does not meet
requirements,(do not cross the limited capacity of
datacenter), then it abandon and generate a new
matrix.

Step 3: Calculate the each individual in the
population BL (T), T=0, 1, 2, 3,…, and generate a
matrix Z by matrix multiplication, Z=A*B. the
number of data scheduling is calculated from the
equation(15).

Step 4: Calculate the number of data scheduling is
Γ (Bt). For each individual in each population BL
(T). The fitness value of Bt is denoted as F=1/ Γ
(Bt).

After calculating the fitness value of each
individual in population, then calculate the
probabilities of L individual from BL (T) by using
the roulette wheel selection.

Step 5: perform crossover operation on selected
placement matrices. The crossover rate (Cr)
indicates that percentage of chromosomes taking
part in the crossover operation.

Step 6: perform mutation operation on crossover
resultants.

We have to take practical example on process of
data placement based on genetic algorithm.

A Data Placement Strategy Based on Genetic
Algorithm in Cloud Computing, we can minimize
the data scheduling between data centers. Let us

1 0 1 1 1 1 0 1

1 1 1 0 0 1 0 0

1 0 1 1 0 1 0 0

1 1 1 0 1 1 0 1

1 1 0 1 0 1 0 1

1 1 1 1 1 0 0 1

Y.Neeraja et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 7 (4) , 2016, 1836-1846

www.ijcsit.com 1840

examine the practical example on data placement
strategy based on Genetic Algorithm.

Let us assume data centers as (l), datasets as (n)
and computations as(c). In this example we can
define Processing factor (αij) and Placement factor
(βjk).

The Association matrix (processing factor) for
computation set C and Datasets D is denoted as A.

A= [αij]m*n

A=

The Association matrix (placement factor) for
dataset D and datacenter S is denoted as B.

B= [βjk]n*l

 B1=

Where we can define a matrix Z=A*B1

Z=[Σn
j=1(αij*βjk)]m*l

Zik= *

Zik=

In the resultant matrix Z, row can be represented as
data centers. And columns represented as
computations. Where Σi=1

m u (Zik). is the number of
the datasets processed in data center Sk when all
the computations are performed one time.

Σi=1
m u (Zik) = 5+5+6

 = 11
Where Σl

k=1 u (Zik) is the total number of times of
accessing all data centers during the execution of
the computation ci , also is the number of datasets
processed during the execution of the computation
ci.
Σl

k=1 u (Zik) = 4+5+5+2
 = 16

In this example all computations are executed one
time is 16. And we can define a execution
frequencies of each computation ci is denoted as µi.
The number of data scheduling is (Σl

k=1 u(zik)-1)
when computation ci is executed one time.
The number of data scheduling is
(16-1) =15 when computation c1 is executed one
time.
(16-2) = 14 when computation c1 is executed
second time.
All computations are executed in the unit interval is
Γ (B= Σm

i=1 [Σ
l
k=1 u (zik)-1]*µi

 =Σm
i=1 [15*1]

Where µ1=1
Γ (B1) = [15+28+26+36+11+20+9+8+14+24+5]

 =196
All computations are executed in the unit interval is
196.
In this example the processing factor is constant,
and placement factor is varies. This means that

 A=

B2=

Z= *

Zik=

0 1 0 1

0 1 0 1

1 0 1 0

0 1 0 1

0 1 0 1

1 0 1 0

1 1 0 1

0 1 1 0

1 0 1 1

1 1 1 0

1 1 0 1

0 1 1 0

1 0 1 1

1 1 1 0

0 1 0 1

0 1 0 1

1 0 1 0

1 2 2 0

1 2 2 0

2 1 1 2

1 1 0 1

1 1 1 0

0 0 1 0

1 0 1 0

2 1 2 0

2 1 2 0

1 1 1 1

0 1 0 1

0 1 0 1

1 0 1 0

1 1 0 1

1 1 1 0

0 0 1 0

1 0 1 0

Y.Neeraja et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 7 (4) , 2016, 1836-1846

www.ijcsit.com 1841

Σi=1
m u (Zik) = 5+5 +4

 =14
 Σl

k=1 u (Zik) = 5+3+5+1
 =14
The number of data scheduling is (14-1) = 13 is
executed one time.
The number of data scheduling is (14-2) =12 is
executed second time.
All computations are executed in the unit interval is
Γ (B2) = Σm

i=1 [Σ
l
k=1u (zik)-1]*µi

 = Σm
i=1 [13*1]

 =151
And

A=

B3=

Z=A*B3

 Z= *

Zik=

Now calculate the sum of rows and columns in
matrix Z.
Σi=1

m u (Zik) = 4+4+4
 =12
Σl

k=1 u (Zik) = 4+3+2+3
 =12
The number of data scheduling is (12-1) = 11 is
executed one time.
The number of data scheduling is (12-2) =10 is
executed second time.
All computations are executed in the unit interval is
Γ (B3) = Σm

i=1 [Σ
l
k=1 u (zik)-1]*µi

 = Σm
i=1 [11*1]

 =95

And

A=

B4=

Z=A*B4

Z= *

Zik=

Now we can calculate the sum of rows and
columns.
Σi=1

m u (Zik) = 5+5+4
 =14
Σl

k=1 u (Zik) = 3+4+6+1
 =14
The number of data scheduling is (14-1) = 13 is
executed one time.
The number of data scheduling is (14-2) =12 is
executed second time.
All computations are executed in the unit interval is
Γ (B4) = Σm

i=1 [Σ
l
k=1u (zik)-1]*µi

 = Σm
i=1 [13*1]

 =142
In the above example the data scheduling between
data centers is more. To reduce the data scheduling
between data centers by using Genetic Algorithm.
In the genetic algorithm we are using fitness
function, crossover and mutation.

A) Fitness function
Fitness function is the evaluation function to guide
the search in genetic algorithm. In the issue of
genetic algorithm-based data placement, the
objective function is denoted as Г(B), and the
fitness function is the reciprocal of the objective
function, that is 1 = ܨ/Г(B).
Fitness function
f (1) =1/߁(B1)

0 1 0 1

0 1 0 1

1 0 1 0

1 0 1 0

0 1 1 0

0 0 1 1

1 1 1 0
0 1 0 1

0 1 0 1

1 0 1 0

1 1 0 0

1 1 0 1

1 0 0 1

0 0 1 0

0 1 0 1

0 1 0 1

1 0 1 0

1 1 0 0

1 1 0 1

1 0 0 1

0 0 1 0

1 1 1 1

1 1 1 1

2 1 0 1

1 2 2 0

1 2 2 0

1 0 2 1

0 1 0 1

0 1 0 1

1 0 1 0

1 0 1 0

0 1 1 0

0 0 1 1

1 1 1 0

Y.Neeraja et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 7 (4) , 2016, 1836-1846

www.ijcsit.com 1842

 =1/196
 =0.0051
f (2) =1/	Γ(B2)
 =1/151
 =0.0066
f (3) =1/	߁(B3)
 =1/95
 =0.0105
f (4) =1/	߁(B4)
 =1/142
 =0.007
Total=0.0051+0.0066+0.0105+0.0070
 =0.0292

B) Probability
Suppose there is an individual ݇ and its probability
of being selected is p (k):
P (k) =f (k)/∑i=1

N-1 f (i); k=1, 2, 3,., N
P [1] =f (1)/ total
 =0.0051/0.0292
 =0.1746
P [2] =f (2)/ total
 =0.0066/0.0292
 =0.2260
P [3] =f (3)/ total
 =0.0105/0.0292
 =0.3595
P [4] =f (4)/ total
 =0.0070/0.0292
 =0.2397
Suppose 0 = (0)ݍ,
q (k) = p (1) + p (2) +………+ p (k);
 k = 1, 2,…….N ;
q (1) =0.1746
q (2) =0.1746+0.2260
=0.4006
q (3) =0.1746+0.2260+0.3595
=0.7601
q (4) =0.1746+0.2260+0.3595+0.2397
=0.9998
After that we can perform crossover and mutation
operation.

C) Crossover
0 1 1 0 1 1 1 0

1 1 0 1 1 1 0 1

1 0 1 1 0 0 1 0

1 1 1 0 1 0 1 0

B1 B2

Before two point crossover

1 1 0 1 1 1 0 1

1 1 1 0 0 1 1 0

0 0 1 0 1 0 1 1

1 1 1 0 1 0 1 0

B1 B2

After two point crossover

Fig 4: Crossover operation on placement
matrices.

D) Mutation

1 1 0 1 1 0 0 1

0 1 1 0 1 0 1 0

1 0 1 1 1 0 1 1

1 1 1 0 1 1 1 0

B1 B1
Before Mutation After Mutation

Fig 5: Mutation operation on placement
matrices.

Here we can derive normal crossover and mutation.
And now we can use crossover and mutation
algorithms.

We have take a values L=4, Cr=25% (0.25) and Mr
=10% (0.1)

E) Crossover algorithm:

i=0, num=0, j=0;

if i<L (0<4) /*TRUE*/

/*Then generate random number r0=0.201*/

if ri < Cr (0.201<0.25) /*TRUE*/

/* Select B0 as a father */

num =num+1 (num =0+1)

num =1

i=i+1 (i=0+1)

i=1

if j<num/2 /* generate a random number rk =1
(rk≠j)

/* change genes between Brk, Bj */

/* crossover between B1, B0 */

j=j+1 (j=0+1)

j=1

This algorithm continuous up to condition is false.
If the condition is false the crossover algorithm is

Y.Neeraja et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 7 (4) , 2016, 1836-1846

www.ijcsit.com 1843

terminated. And the crossover operation performed
between the selected parents from the above
crossover algorithm.

By using the crossover algorithm we can perform
the crossover operation between B0 and B1, B1 and
B2.

F) Mutation Algorithm

i=0

if i<L (0<4) /*TRUE*/

/*generate a random number r0=0.201*/

if ri< Mr (0.201<0.1) /*FALSE*/

if i<L (1<4) /*TRUE*/

/* generate a random number r0=0.09*/

if ri< Mr (0.09<0.1) /*TRUE*/

Mutate B1

i=i+1 (i=1+1)

i=2

This algorithm continuous up to condition is false.
If the condition is false the mutation algorithm is
terminated. And the mutation operation performed
between the selected parents from the above
mutation algorithm.

The mutation operation performed on B0, B1, B2
matrices. The data can be accessed from the datasets
B0, B1, B2. The resultant data can be modified after
performing the crossover and mutation operations.

VI. EXPERIMENTS AND RESULTS

To test the data placement strategy based on genetic
algorithm proposed data storage and access platform
is constructed. The platform is composed of 20 Dell
Power Edge T410 servers. Each of them has 8 Intel
Xeon E5606 CPU (2.13 GHz), 16G DDR3 memory
and 3TB SATA disk. Every server acts as a data
center and we deploy VMware and independent
hadoop file system on each data center under the
environment of Gigabit Ethernet.

A) Result and Analysis

The data placement strategy in genetic algorithm is
as follows. The feasibility of genetic algorithm in
data placement is tested. The solutions of genetic
algorithm are compared with the Exhaustive search
algorithm, when the numbers of datasets are small.
The relationship between the minimum number of
data scheduling of different number of datasets and
the generation are represented by a line chart.

In genetic algorithm the size of initial population
was 4, the maximum generations was set to 100,
and the crossover rate and mutation rate were 0.25
and 0.1. The number of iterations of Monte Carlo
algorithm is 102.

The data scheduling between data centers of three
algorithms are shown in below figure.

Fig 6: Data scheduling between data centers with different
number of datasets.

We can increase the number of generations then the
number of data scheduling becomes smaller and
smaller. The optimization results are very near to
solutions.

If the number of datasets is large, the computation
complexity is high in the Exhaustive search
algorithm. The optimization results are infeasible,
because of the computation complexity. Then we
compare the results of genetic algorithm and Monte
Carlo algorithm. We ran 20 different test
computations randomly for 500 times on 8 data
centers with different datasets. And we increase the
number of data centers in different searching
algorithms i.e; 20, 40, 60, and so on. The results are
shown in below.

Fig 7: Data scheduling between data centers with different
number of datasets.

Y.Neeraja et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 7 (4) , 2016, 1836-1846

www.ijcsit.com 1844

In the above graph we can compare the results of
data scheduling between the data centers with the
number of datasets. And now we can compare the
results of data scheduling between the data centers
with the number of data centers. By comparing
those results such as numbers of data sets and
numbers of data centers.

Fig 8: A data scheduling between data centers with different
number of datasets.

From the above two figures the results are
compared. The data scheduling between data
centers of approximate results of genetic algorithm
is smaller than results of Monte Carlo algorithm.
When the number of datasets is large, the optimal
solutions can be improved compared with the
monte carlo algorithm.

VII. CONCLUSION

In the environment of distributed cloud computing,
the data placement becomes a huge or critical issue.
In genetic algorithm the optimization time is low.
With the results of optimization time is low in
genetic algorithm with the monte carlo algorithm.

Fig 9: Optimization time of the two algorithms in different
number of data sets.

Reasonable placement of dataset in data centers can
minimize the data scheduling between the data
centers.

Fig 10: Optimization time of the two algorithms in different
number of data centers.

In this paper a mathematical is built. The model
illustrates relationship between datasets, data
centers and computations. In this paper three
different types of algorithms are used. The
Exhaustive search algorithm is valid when the
number of datasets is small. In Monte Carlo
algorithm the optimization time is high. And
genetic algorithm is overcome those problems in
above two algorithms.

Genetic algorithm can find the optimal data
placement matrix, when the numbers of data sets
are large. Genetic algorithm can find an
approximate optimal data placement matrix in a
reasonable time, and the optimization result is
better than the exhaustive search algorithm, Monte
Carlo algorithm.

The focus of our research is to find the data
placement matrix, and reduce the data scheduling
between data centers as small as possible. In
genetic algorithm the selection operator is main
important. The selection operators such as Roulette
wheel selection, Steady state selection, Tournament
selection, and so on. In this paper we are using
Roulette wheel selection, why because the selection
operator in genetic algorithm affects the
performance of the algorithm.

REFERENCES

[1] Introduction to cloud computing-
https://en.wikipedia.org/wiki/Cloud_computing.

[2] Data placement strategy in distributed systems
www.gsd.inesc-id.pt/~jgpaiva/pubs/ladis14-
presentation.pdf

[3] Doraimani, S. and Iamnitchi, A. (2008) File Grouping for
Scientific Data Management: Lessons from Experimenting
with Real Traces. Proceedings of the 17th International
Symposium on High Performance Distributed Computing,
ACM, Boston, 2008, 153-164.

Y.Neeraja et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 7 (4) , 2016, 1836-1846

www.ijcsit.com 1845

[4] Fedak, G., He, H. and Cappello, F. (2008) BitDew. A
Programmable Environment for Large-Scale Data
Management and Distribution. ACM/IEEE Conference on
Supercomputing, Austin, 15-21 November 2008, 1-12.
http://dx.doi.org/10.1109/SC.2008.5213939

[5] Kosar, T. and Livny, M. (2005) A Framework for Reliable
and Efficient Data Placement in Distributed Computing
Systems. Journal of Parallel and Distributed Computing,
65, 1146-1157.
http://dx.doi.org/10.1016/j.jpdc.2005.04.019

[6] Yuan, D., Yang, Y., Liu, X. and Chen, J.J. (2010) A Data
Placement Strategy in Scientific Cloud Workflows. Future
Generation Computer Systems, 26, 1200-1214.
http://dx.doi.org/10.1016/j.future.2010.02.004

[7] Zheng, P., Cui, L.Z., Wang, H.Y. and Xu, M. (2010) A
Data Placement Strategy for Data-Intensive Applications
in Cloud. Chinese Journal of Computers, 33, 1472-1480.
http://dx.doi.org/10.3724/SP.J.1016.2010.01472

[8] Labrinidis, A. and Jagadish, H. (2012) Challenges and
Opportunities with Big Data. Proceedings of the VLDB
Endowment,5, 2032-2033.
http://dx.doi.org/10.14778/2367502.2367572

[9] Zheng, P., Cui, L.Z., Wang, H.Y. and Xu, M. (2010) A
Data Placement Strategy for Data-Intensive Applications
in Cloud. Chinese Journal of Computers, 33, 1472-
1480.http://dx.doi.org/10.3724/SP.J.1016.2010.01472

[10] Yuan, D., Yang, Y., Liu, X. and Chen, J.J. (2010) A Data
Placement Strategy in Scientific Cloud Workflows. Future
Generation Computer Systems, 26, 1200-1214.
http://dx.doi.org/10.1016/j.future.2010.02.004

[11] Kosar, T. and Livny, M. (2005) A Framework for Reliable
and Efficient Data Placement in Distributed Computing
Systems. Journal of Parallel and Distributed Computing,
65, 1146-1157.
http://dx.doi.org/10.1016/j.jpdc.2005.04.019

[12] Agrawal, D., Das, S. and El Abbadi, A. (2011) Big Data
and Cloud Computing: Current State and Future
Opportunities. Proceedings of the 14th International
Conference on Extending Database Technology, Uppsala,
21-25 March 2011,530-533.

[13] Exhaustive search algorithm-
www.algorithmist.com/index.php/Exhaustive_Search

[14] Monte carlo algorithm-
https://en.wikipedia.org/wiki/Monte_Carlo_algorithm

[15] Grant, K. (1995) An Introduction to Genetic Algorithms.
C/C++ Users Journal, 13, 45-58.

[16] Zhou, M. and Sun, S.D. (1999) Genetic Algorithms and
Applications. National Defense Industry Press, Beijing.

[17] Polgar, O., Fried, M., Lohner, T. and Barsony, I. (2000)
Comparison of Algorithms Used for Evaluation of
Ellipsometric Measurements Random Search, Genetic
Algorithms, Simulated Annealing and Hill Climbing
Graph-Searches. Surface Science, 457, 157-177.
http://dx.doi.org/10.1016/S0039-6028(00)00352-6

[18] Tan, B.C., et al. (2008) A Kind Of Improved Genetic
Algorithm Based on Robot Path Planning Method. Journal
of Xi’an University of Technology, 28, 456-459.

Y.Neeraja et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 7 (4) , 2016, 1836-1846

www.ijcsit.com 1846

